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INTRODUCTION 

Finite-state machines provide a natural means for repre- 

senting the logic which may underlie a sequence of data de- 

rived from a sensed environment or for depicting the trans- 

duction between stimulus and response of such an environment. 

Such representation permits expansion of the logic in terms 

of arbitrary input and output languages so long as these are 

expressed within finite alphabets.  Further, the machines may 

be of arbitrary specificity so long as they have only a finite 

number of states.  Thus, no unnatural constraint is imposed, 

as is so often the case when a sequence of data is expressed 

in terms of a best linear fit or when a transduction is ex- 

pressed in terms of a linear difference or differential equa- 

tion. More powerful logical entities can be considered, but 

these may be identified with problems which reduce their ac- 

ceptabili ty. 

The concept of evolutionary programming was conceived 

as a means to find a most appropriate finite-state machine 

for the purpose of prediction or modeling in terms of the 

available data base and an arbitrary expression of goal (a 

payoff or error-cost matrix). Formulation of this concept 

can be traced through various publications.  A review of the 

/ 

/ 
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concepts of evolutionary programming,   its application in  terms 

of prediction experiments,  data reduction and  analysis,  and 

control   system design were described  (reference  1),  this work 

being  supported  in part by the Office of Naval   Research.     This 

reference also  indicates  application  in  terms  of  gaming  and  the 

possible automation of the scientific method.     Further practi- 

cal  and  theoretical   studies  along these  lines were described 

(references 2 through  12).     These references concern the pre- 

diction of solar flares,  the  problem of self-referencing,  model- 

ing of the human operator,  the design of self-sufficient pros- 

theses,  and gaming  in various  contexts. 

In  this work certain  problems  have  been  recognized and 

resolved while others  have  been identified and  brought into 

closer perspective.     Fundamental  to  all   these  is   the limit of 

evolutionary programming  in  terms of efficiency  and the poten- 

tial   use  of th>s  technique  for gaining  greater  insight  into 

aspects  of natural   evolution. 

This  final   report does  not contain  previously published 

material.    Rather,   it  includes  specific  findings  which serve 

to clarify the  capability and  limitations  of using automata 

and evolutionary programming  for the purpose of  prediction 

and control. 
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DISCUSSION 

Choosing the size of a finite-state machine always pre- 

sents a problem.  Obviously any finite sequence of symbols can 

be perfectly fit by a large enough machine, but it would most 

likely be a poor predictor, for the states would be exercised 

so rarely that the machine would not represent any of the un- 

derlying regularity of the process whereby the sequence of 

symbols was generated. This problem was recognized early in 

the development of evolutionary programming and so a complex- 

ity factor was introduced to inhibit the growth of machine 

size.  Initially this factor was input data to the program, 

but to choose a suitable value for the complexity factor, 

seme a priori knowledge was required (whether it is cyclic, 

stochastic, and so forth).  Various techniques were developed 

so that the program could directly determine machine size or 

indirectly control the growth of machines by assigning approp- 

riate values to the complexity factor.  However, none of these 

techniques work well for all of the environments which were 

/considered. 

The primary difficulty in this regard was that the choice 

between a parent and offspring had to be on the basis of fit- 

score, and larger machines generally tend to have better fit- 
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scores due to the fact that many of the state-input pairs are 

exercised only once over the recall.  The output algorithm 

then assigns the symbol giving smallest error-cost to each 

state-input pair and, thus, assigns the correct symbol to each 

such singleton state-input pair. 

The first technique used to eliminate this overemphasis 

on fit-score requires that the program maintain several classes 

of machines, usually three or four.  One class consists of a 

one-state machine while a second class consists of machines 

having a number of states which exceeds some specified lower 

limit but remains less than some upper limit determined by the 

computer memory.  The third class or additional classes con- 

sists of machines with specified lower and upper bounds on the 

number of states.  The lower bounds usually exceed one and the 

upper bounds are generally below the lower limit of the class 

of large machines. 

After the initial period during which the machine having 

the best fit-score is used as the predictor, a machine is cho- 

sen from that class which indicates the best "action" score 

over the last k predictions, k being some preassigned number. 

In general, this metliod yielded an improvement over the pre- 

vious scheme which maintained only a single machine, but it 

increases the storage problem as well as the cost of comput- 

tation.  Note that here several machines must be referenced 

and the current machine of each class must be mutated during 

each mutation phase. 
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Another algorithm was then devised which considered the 

result of only those inputs which exercise other than single- 

ton state-input pairs in determining the average error score 

(the fit-score). This technique as well as the earlier algor- 

ithms were tested against a first-order Markov process (using 

the single machine algorithm versus the multiple machine al- 

gorithm since the latter always had a one-state machine which 

would be the best finite-state for a first-order Markov pro- 

cess).  The newly developed technique demonstrated not only 

a better prediction score, but through its use, the size of 

the machines decreased while machine size grew in the older 

version. 

In many situations the plant or other transducer under 

consideration is actually a composite of smaller logical en- 

tities, the composition being parallel, series, or a combin- 

ation of parallel and series.  In such a case the number of 

states in a single machine representation of the transucer is, 

in general, the product of the number of states in the smaller 

machines.  For example, parallel compositions of a six-state 

and a nine-state machine results in a 54-state machine (al- 

though the actual number of states required may be less than 

54 since there may be some redundancy identifiable and some 

state combinations may not be reached from the given starting 

state).  Thus, when a machine can be decomposed into smaller 
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machines, the total number of states which must be considered 

is considerably reduced. This also raises the question as to 

whether or not a machine, even if not decomposable, is a sub- 

machine of a decomposable machine. Thus, theoretical and ex- 

perimental effort was applied to the problem of parallel de- 

composition. 

A program was written to evolve a parallel composition 

of two finite-state machine which would fit the transduction 

of a larger finite-state machine.  In the initial experiment, 

a six-state machine with eight-symbol input was known to be 

the parallel composition of a two-state machine (the output 

symbols of which were the high-order bit of the larger machine's 

symbols) and a three-state machine (the output symbols of which 

were the two lower-order bits of the larger machine's symbols). 

After 385 mutations the program successfully evolved the approp- 

riate two-state and three-state machines. 

Before applying the program to arbitrary machines, some 

criteria should be established as a guide for determining if 

the program is evolving machines which, in parallel composi- 

tion, adequately simulate or approximate the given machine. 

Thus, an effort was made to determine the "best" parallel de- 

composition of a given machine for a given decomposition of 

the input-output alphabet of a machine, if possible.  This 

would provide a means for assessing how well the evolutionary 

program performs. Theoretical aspects of this problem were 

also considered. 
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In the case of a machine which is the parallel composi- 

tion of two machines, a decomposition scheme should produce 

these two machines. This case was considered first: 

Let M, = (A, B,, Q,, x,, 6,) and '1 1 »  X] »  Al ,  O-J 

M2 = (A, Bg» Qg» ^2* 52^ be reclucec' machines and let 

M = (A, B. Q, x, 6) 

be the parallel composition of M, and M2 so that B = B, x B«, 

Q = QT x Q2, Ata.fq^ q2)) = (x^a, q^, x2(a, qg)) and 

«(a.Cq^ q2)) = U^a, q^.Ögta, q2)). 

Let M] = (A. B^ Q. x, &\)  with 

6j (a. (q^ q2)) = s^ia,  q})   and 

M^ = (A, B2t Q, x, 6^) with 

ö2 (a, (q1, q2)) = ö2(a, q2). 

Then M, is the reduced machine of M| and M2 is the reduced 

machine of MA. 

With this result as a guide, consider a machine M = 

(A, B, Q, x, 6) and any decomposition of B into a direct pro- 

duct of two sets, say, B-, and B2, for example, B = B-, x B2. 

Then there exists unique functions 61 and 62 with 0, mapping 

A x Q into B^ and 62 mapping A x Q into B2 so that ö(a, q) = 
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(^(a, q), 62(a, q)). 

Let Mj = (A, B1, Q, x, 6^ and 

M^ = (A, B2. Q, A. ö2) 

Then if under this decomposition of B, M is as before the 

parallel composition of machines M, and M», it can be shown 

that M^ is the reduced machine of M^ and Mg is the reduced 

machine of Mi. 

In general, if M, is the reduced machine of Mi and M« 

is the reduced machine of Mi. then there is a submachine N 

of the parallel composition of M-j and Mg such that M is the 

reduced machine of N. This is the case if M is reduced, 

otherwise M and N have the same reduced machine. 

In view of these results, for a given decomposition of 

the output alphabet, the reduced machines of the machines 

Mj and M^ constructed as above from a given machine M yield 

the best parallel decomposition of M. 

In the parallel case, the machines are essentially inde- 

pendent so that independent modeling is possible.  This is 

not necessarily true in the series composition.  If the in- 

puts and outputs of each part is known, then the problem re- 

duces to that of modeling individual plants.  If the intermed- 

iate outputs and hence the intermediate inputs are not avail- 

able so that only the initial input and final output are known, 
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then it is not possible to independently model the parts. 

For example, consider the series composition of plant 

P1 followed by plant Pg where only the input to P, and the 

output from P» are known.  Suppose modeling by the series com- 

position of a finite-state machine M^ followed by machine 

Mo is being attempted.  If machine M, is kept fixed, then it 

is possible to evolve the best machine l^, since input and 

output to M, are not affected by changes in Mg.  However, 

when M« is fixed, evolving a best M^ presents a problem in 

that a mutation of l^ and the resulting change in its output 

changes the input environment to Mp.  However, since the ex- 

pected output from M« is invariant, this would, in general, 

result in a degradation of M2 as a model.  Further, since ex- 

pected output from M, is not known, the current versions of 

the evolutionary program cannot be applied since this know- 

ledge is required in their operation.  It was, therefore, felt 

that effort should be directed toward a theoretical investiga- 

tion of series composition to determine, if possible, effective 

algorithms for evolving the series composition of finite-state 

machines. Some preliminary results are given here. 

Suppose machine M is the series composition of machines 

M, and M« (composition in the order named), where 

M1 = (A, B, Q, x}t   6]t  q0) and 

M2 = (B, C, P, x2. 62» P0)- 
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Then 

M = (A, C. Q x P. x, 6. (q0. P0)) where 

x(a. (q. p)]  =  ^(a, q), x2 (fi^a, q), pj)  and 

«(a, (q, p))  = 62 (61 ^a» q^ p) * 

Observe that Q x P = \j     ({q } x P )  and also that 
qGQ 

Q x P =  u (Q x {p})  . 
pCP v     / 

Consider the first of these decompositions of Q x P and 

let S1 = iq^ x P so that Q x P = US^ Now for i ?« j . S^ S. 

|9 (null or empty set). Hence, {Si}is a partition of Q x P. 

Moreover, if x1 (a, q^) = q., then 

x(a. S.) = x(a, ^j. x p) 

= U-l   (a, q^, X2 ^ (a. q^, PJ) 

4i x P 

That is. 

x(a, S^ cSj 
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It Is also true that If T| = Q x \PA*  then {TJIS a par- 

tition of Q x  P.    However»  consider  (q^  p.)  and  (qg,  p^) with 

q,  / q«.    Both  of  those are  In T... 

Now: 

x(a,   (qlt  p1))   =   ^   (a,  q^,  x2   U^   (a, q^,  pSj      and 

x(a,   (q2,   p^ij   =   ^   (a,  q2).   x2   (&}   (a,  q2),  p.jj 

But, In general, It Is possible that 6^(a, q-.) / 6|(a, q2) 

and hence that x^fi^a, q^, p^ t  x2 ^(a, q2), p\   . 

It Is, therefore, not always the case that x(a, T.) CT. for 

some .. So while <JA   Is a partition. It Is not Invariant 

under the x mapping while the partition Is.i Is. 

On the basis of the partition HA*  It follows that for 

a finite-state machine to be a series composition of two ma- 

chines. It Is necessary that a partition of the states exists 

which Is Invariant under the x mapping.  The set of singleton 

states forms such a partition but this would lead to the triv- 

ial series composition of the given finite-state machine with 

a one-state machine. This partition Is excluded as an allow- 

able one, for example. In an allowable partition, not all of 

the sets In the partition can be singleton sets. 

With the partition <q- x P? as a guide, the problem of 

decomposing a given finite-state machine Into a series compo- 
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sltlon of machines is considered. Let M be a finite-state 

machine where M « (A, C, S. x, 6> s ) and suppose S - 

SU,,*Lek such that for each a In A and each 1 there Is a j 

such that x(a, S^)CS..  (For a set X, let X be the cardin- 

ality of X, that Is, the number of elements In it). If 

necessary, relabel the states so that 

sij h  < J 5 Is ■ii 
and s = s,,. Let I. be the set consisting of the first k 

positive integers, let B = A x K and denote the pair (a., j) 

by b...     Let 

Q = {qJ 1 in Ik} 

be  a set of k new symbols  and consider the finite-state machine 

M1  with 

M1   =  (A,  B,  Q,  A^   6^  q^ where 

X^a, q^  * q.    whenever 

x(a,  S^ )CS.      and       6^8^ q.)  =  b... Let 

P =   {Pl| 
1   <  1   <  r1 
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be a set of r new symbols, where r = max|s,|, let c be In C, 

and consider the finite-state machine Mg with 

Mg » (B, C, P, Xgi &£$  P])  where 

x2^bii* kn^ s  pm  whenever  n < S.  and 

x(ai' sjn) = skm 

= pr otherwise and 

XgCb^, pn) = 6(3^., Sjn)  whenever  n < |sj| 

= c otherwise. 

Theorem. M is equivalent to a submachine of the series  compo- 

sition of M1  and Mg.     If     Is-I   =  r    for all  j, M is  equivalent 

to the series  composition of M-.  and Mg. 

The  identification problem arises whenever it is  required 

to determine  a  logical   representation  for the transduction 

which  is  presumed to couple two sequences of symbols  (the pre- 

sumed Input and  output of a black box).     Evolutionary program- 

ming was  demonstrated as a means  for addressing this  problem. 

015 



For example,  the finite-state machines  shown  In Figures  1  and 

2 were driven by a  forcing  function,  these  Input and output 

sequences being used as  a basis for modeling by both the evo- 

lutionary program and the human operator.     Specifically,  Tables 

1   and 2 Indicate the  Input and output sequences  In each of  these 

experiments.     Table  3 provides a comparison  of the modeling  capa- 

bility of the human  operator with  that of the evolutionary pro- 

gram In terms  of predicting each next symbol   on the basis  of 

the currently held model. 

The Identification problem often arises within the context 

of prior information concerning the equations  of motion or some 

other governing differential  equations.     It  is  of interest to 

utilize the basic format of the equations  and perform an analy- 

sis  of the available  data  base which will   provide a best esti- 

mate of each of the  unknown parameters,   thus,   completing  the 

identification as  required.    For example,  suppose that one is 

given  a linear matrix differential  equation of the form 

x  = Ax + Bu 

where x Is a vector of n state variables,  u  is  a vector of m 

control  variables,  A  is  a  time invariant n x m matrix,  and B 

is  a  time invariant n  x m matrix.     Find,  from a given time his- 

tory of x(t)  and u(t)(and,  possibly,  x(t)),  the unknown param- 

eters of the A and B matrix. 
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Tiblt 1. 

INPUT AND OUTPUT OF MACHINE I 

Input Sequence 
1123132113122213131332 

2113332333312112312332 

2231332232312222321121 

3122333322132133323132 

1311221122332313123331 

3311331332123223121211 

1121333121111132232213 

132211132123223 2312331 

2122111132312122 131212 

1331233132123211322312 

1112311221211123322322 

112 2 2 3 12 3 2 122332332123 

1122121221133222213311 

23211311132213 

Output Sequeno 

233333313323121323232 1 

2133233332333 2 23333333 

3132321211121313332232 

1313332331331132333333 

1323313323311323233322 

132332213 3133313211322 

3332131313333333333333 

2333333331333131121113 

2131333331121131332113 

2132333211333322333323 

22333333132133333333 3. 3 

3313132111131312112133 

333132 1-313331231321323 

33322323333333 
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Tablt 2. 
INPUT AND OUTPUT OF MACHINE II 

Input Sequence 

1123132113122213131332 

2113332333312112312332 

2231332232312222321121 

3122333322132133323132 

1311221122332313123331 

3311331332123223121211 

1121333121111132232213 

1322111321232232312331 

2122111132312122131212 

1331232132123211322312 

1112311221211123322322 

1122231232122332332123 
1122121221133 2 22213311 
23311311132213 

Output Sequence 
3 2 1 1 3 1 2 2 2 3 2 i 2 1 3 3 2 2 2 3 1 2 

3 2 2 1 1 1 2 1 1 1 1 2 1 3 2 1 1 3 2 1 1 1 

!                          2 2 1 3 1 1 1 2 1 2 3 2 1 2 1 2 1 2 2 2 3 2 

3 2 3 1 1 1 1 1 2 3 2 3 3 2 3 3 1 2 3 2 2 3 

2 3 2 2 3 1 3 3 1 2 3 1 2 3 2 2 2 3 1 1 1 2 

2 3 2 1 1 1 3 3 1 2 2 3 1 1 2 1 3 2 2 1 3 2 

2 3 3 2 3 3 1 3 2 2 1 3 2 2 3 1 2 1 2 3 2 3 

2 3 1 2 3 2 2 1 2 3 1 1 1 2 1 2 3 2 1 1 1 2 

1 3 1 2 2 2 2 2 3 1 1 3 3 2 1 2 2 2 2 3 2 1 

3 1 1 3 2 1 2 2 3 1 3 3 1 1 3 2 3 1 2 1 3 2 

2 1 3 3 1 2 1 2 2 2 1 3 2 2 2 1 1 1 2 1 2 3 

2 2 2 2 1 1 3 3 1 1 3 3 1 1 1 2 3 1 2 2 3 1 

2 1 2 2 2 1 3 1 2 2 2 3 1 2 3 1 2 2 3 1 3 3 

I                         1 1 1 3 2 3 2 1 3 3 1 2 3 1 

i 
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Finite-State      Finite-State 
Machine  I Machine II 

Evolutionary 
Program 99.3% 99.3« 

Human Operator 1 63 % 

Human Operator 2 41 % 

Human Operator 3 40 % 

Table 3. 
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If a time history of x(t) is generated by an exact solu- 

tion of the differential equation above, a formulation of 

n(n + m) linear equations using values of x(t), x(t), and 

u(t) at points which will guarantee linear independence be- 

tween these equations permits determination of the exact val- 

ues of the n(n + m) unknowns of A and B. 

If exact values of x(t) are not given yet x(t) and u(t) 

for At sufficiently small are known, numerical differentia- 

tion of x(t) yields sufficiently small are known, numerical 

differentiation Of x(t) yields sufficiently accurate esti- 

mates ov x{t) so that again, by formulating n(n + m) linear 

independent equations, acceptable approximate values for the 

unknowns A and B can be found. 

If, however, the time history of x(t) is determined by 

a process governed by the differential equation noted above, 

but the sequence of values of the x(t) is obtained by measure- 

ments, contaminated by noise, a solution of n{n + m) indepen- 

dent linear equations will give only estimates of the unknowns 

A and B.  Improved estimates can be obtained by solving, in 

the least square sense (or minimax, which is computationally 

more difficult), a system with more than n(n + m) equations. 

This "least square" solution is also applicable and useful in 

the previously mentioned case where the x(t) have been obtained 

by numerical differentiation of x(t). 
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These cases assumed that the values of x(t) were obtained 

by a process which can be exaccly described by a linear differ- 

ential equation of the form described above. However, this 

equation may be only a first approximation to a process which 

is, physically, a nonlinear process. This is the case, for 

instance, in the equations of rotational motion of an aircraft, 

where we have products of p, q, and r appearing in the equations 

for p, q, and r.  The problem, thus, consists in finding two 

time invariant matrices, A and B, which allow the approxima- 

tion of the nonlinear differential equations of motion by a 

system of linear differential equations valid over a limited 

period of time and range of state and control variables.  The 

problem of determining stability derivatives from flight data 

falls into this last class. 

Looking at the problem of system parameter identification 

from the point of view of function optimization, the problem 

can be formulated as follows: Define a payoff function.  For 

Instance, 

z = 
n 
z 

1 = 1 
/end (x. xi)Vwi dt 

Since x(t)  is a function of the undetermined parameters 

OT   ...  a„(n + m),  z  is  also a function of  these parameters, in 

Consider them as  Independent variables defining an n(n + m) 

023 



dimensional space. Here is the classical problem of minimiz- 

ing a function of n(n + m) independent variables with no con- 

straints. 

This problem can be attacked in several ways:  A general- 

ized Newton-Raphson method for finding zeros of functions of 

several variables may be used.  Several gradient methods based 

on steepest descent have been developed in the past.  If the 

number of independent variables is relatively large, methods 

based on random search techniques have been used relatively 

successfully.  The problem of function minimization with many 

independent variables is particularly difficult to solve econ- 

omically when a comparatively large amount of computer time is 

required to evaluate z and is larger than the time required 

to make a decision about the necessary changes in the parameters 

Here, the evolutionary program is used to find a logic which 

should help to find a more rapidly converging path in the opti- 

mization procedure. The program used permits adjusting two 

free parameters, these starting with a random search proced- 

ure and as soon as enough trials have been made using the 

finite-state machine evolved by the evolutionary program to 

decide which next move will yield an improvement in the value 

of the payoff function. 

Situations often arise in which it is desired to have a 

given system or plant perform in a particular manner.  The 

problem then is how to manipulate the input parameters so as 
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to achieve the desired performance.  The degree of difficul- 

ty in accomplishing this result depends on many factors, for 

example, the complexity of the plant dynamics, how well these 

dynamics are known or the controllability of the input param- 

eter. Consider the case where the input parameters are con- 

trollable but the plant dynamics are only partially known. 

A first step in controlling such a plant or device would be 

to obtain a workable model of it. Suppose that it is possible 

to sample the inputs and outputs at fixed time intervals so 

that time histories of the input-output pairs are available. 

For the application of the evolutionary program a natural 

question is whether or not the time history can be adequately 

modeled by a finite-stated machine.  Can one find a class of 

plants or devices so that sampled time histories can be ade- 

quately modeled by finite-state machines? For such a class 

the application of evolutionary programming then becomes feas- 

ible. 

Now a large class of input-output devices have their dy- 

namics representable by differential equations. Consider those 

where the output y(t) is related to the input x(t) by a differ- 

ential equation of the form y' = F(x, y).  Here F is assumed 

to be only partially known.  In practice, even if F were known, 

closed-form solutions do not exist or are very difficult to 

derive so that solutions are usually obtained by numerical 

techniques.  Such solutions consider sampled values at cer- 
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tain  time  Intervals   (usually fixed although sometimes variable 

time steps are used).     In general, the solution  formulas give 

the output  value yn  at the n-th step  as  a  function of the  cur- 

rent  Input value as well   as  a  certain  number of  the previous 

Input and output values, for example. 

yn = f(xn, xn_1 xn_k, yn_1,  ...  , yn_k). 

If the range of Input and output values are quantized 

Into a finite number of Intervals, then the solution formula 

gives a function from a finite Input alphabet to a finite 

output alphabet which Is completely determined by the current 

Input together with the last k Input and output.  As will be 

shown later In this report, such a function can be represented 

by a finlte-syate machine and so finite-state machines provide 

approximate models for this class of devices.  How well they 

can approximate such a device depends, of course, on the sam- 

pling rate of the Input-output values as well as the Interval 

sizes used In quantizing the range of Input and output values. 

In order to demonstrate the feasibility of finite-state 

machine controlled systems and to point out some of the diffi- 

culties which will have to be expected In such systems, a simple 

second-order sampled system, as shown In Figure 3, Is investi- 

gated. 
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Sampler 
Period T F 

Controller 
/ 

Quantizer 
K 

7 
Outp 
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Figure 3.  Second Order Sampled System 

3/2 

1/3 3/2 

Figure 4.     Finite-State Machine  Controller 
for Second Order System 
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Assume the system which  has a  finite-state machine as 

controller to work as follows:    After every T seconds,  the 

sampler  Is closed  for a  time  T << T.     The present value of 

the output variable  Is quantized,  and for our simple example, 

a quantization  into  three  levels will   be assumed.    The  quan- 

tized  state variable x determines  the  input symbol  to  the 

finite-state machine according to Table 4.    Let  the outputs 

of the  finite-state machine  be the  symbols  1,  2,   or 3 and 

let  the following  inputs  to  the second-order system corres- 

pond  to  the three  input symbols shown  in Table  5.     The  finite- 

state machine shown  in Figure 4 will  be a suitable controller 

for such  a system.     In  the  form of  a state transition table, 

the finite-state machine  is   represented  in Table  6.    The dots 

In Table  6 indicate  "don't  care" situations.     If  properly 

synchronized, an  input of 2 when the machine  Is   In state 2 

can  never occur.    This  shows  that when  designing  a controller 

In  the form of  a finite-state machine some  thought must be 

given on  how to properly synchronize the  system.     This may 

become one of the major design problems  when  the  observed 

values of the state variables which have to be controlled are 

contaminated by  noise.    Noisy  Inputs might well   produce  trans- 

itions  in  the finite-state machine casuing  loss  of synchroni- 

zation.     Sometimes  It is  possible to design  self-synchronizing 

finite-state machines  so  that even  a  temporary  transition  into 
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X Input Symbol 

X < 0 

X > L 

0  «C X  <L 

1 

2 

3 

Table 4. 

Output Force 

1 

2 

3 

0 

-F 

+F 

Table 5. 

State 

A 

B 

C 

Input                               | 
1 2 3 

A/3 

A/3 

A/3 

V 

C/2 

C/2 

B/2 

B/2 

C/l 

Table 6. 
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an  improper state will   eventually correct  itself.    Such a 

self-synchronizing  finite-state machine may be more  complex 

than  a finite-state machine capable  only of  controlling  a  sys- 

tem with noise-free measured state  variables.     In any further 

analysis,  some effort should concentrate on  solving  the  control 

problem for noisy state  variables. 

Figure 5 shows  the phase plane  plot for a  system using 

the  above-described finite-state machine  starting the machine 

in  the properly  synchronized state.     The phase plane plot in- 

dicates that the system can be  controlled  to  achieve a  stable 

limit cycle.    Note  that  the system,   if sampled  in any way in- 

dicated in  Figure 3,  would be unstable  in  general when  using 

only  one switching  line,  because of  the  time-delay between x 

changing its sign  and  the switching  of  the forcing function. 

Such  a system would show  a  behavior as  given  in  Figure 6. 

Even a system with  two switching  lines where a  zero force 

would be applied within  the region  0 <  x  <  L would be unstable 

due  to the  time delays  of  the switching;  such  a system would 

show  a behavior as  displayed in  Figure  7.     Looking  back  at 

the  system controlled  by  the finite-state machine, we  realize 

that  the capability of  the finite-state machine to  recognize 

the  path by which  the  system entered  the state where 0<x<L 

allows  to apply  zero  force when  passing  through  that state 

in  the direction of decreasing x, but applying negative force 

when  passing  through  those regions with  increasing x.     It be- 
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FIGURE  5. 

Phasa Plane Plot of Second Order Sampled System 
Controlled by Finite-State Machine 
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Figure 6.  Unstable 
System with Only One 
Switching Line. 

X ▲ 

Figure  7.     Unstable 
Second-Order System 
with  Two Switching 
Lines. 

Uw- 
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comes also clear that a controller performing the same func- 

tion could be designed if both x and x were available as inputs 

to the controller.  The solution with the finite-state machine, 

however, has the advantage of not requiring knowledge of x. 

Theoretical consideration shows that within the accuracy 

of the quantizing of the data certain finite-state machines 

could serve as models of transducers whose transfer functions 

can be described by differential or difference equations.  An 

example of this is the modeling by finite-state machines of a 

servo drive driven by a random sequence where the input and 

output as functions of time are known. A section of the in- 

put and output is shown in Figure 8. 

Since the input is on-off, a two-level coding suffices. 

The output was quantized into 80 levels.  Two approaches were 

considered for the finite-state machine.  One, the input, would 

be binary and the past output would be reflected in the states. 

This would require a large number of states.  The alternative 

would be to code the actual servo input and the past output 

into the finite-state machine input, thus, requiring fewer 

states. This latter approach was selected with an input set 

of 160 symbols and the output in 80 quantized levels. 

Two machine models were evolved (Figure 9).  A two-state 

machine and a four-state machine resulted.  The two-state ma- 

chine modeled well in the middle part of the range where the 

servo output was fairly linear but its accuracy fell off at 
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81 — 160 

1--80 

81--160 
(a)    Two-State Machine 

1—80 

81 — 94 

— 80 

1--30 

1--80 

96—160 

(b)    Four-State Machine 

Figure  9. 

035 



the extremes where  the servo output was  non-linear.     The four- 

state machine performed as  well   on the linear part and better 

on  the  non-linear portion.     Both models  tracked  the  servo out- 

put over the  time history with  an  average error of  less  than 

five percent. 

The experiment also indicated some possible difficulties 

which must be considered in  application of finite-state machines 

as models.     One such is  that the  quantization  levels  and sampling 

times  are too short or  the  quantization  levels   too gross,  the 

change  in output per sample  time may not be  reflected  in  the 

quantized output and the machine  becomes  locked  in an output 

symbol.     This  problem occurred on  the servo models  at  the ex- 

tremes  where  the slope  of  the output curve was  small.     A pos- 

sible  remedy  in  the current model  would be the  non-linear quan- 

tization of  the servo output. 

The possible use of automata for controlling unknown or 

partially known plant systems* as  shown  in Figure 10 were con- 

sidered.       In  these systems,  M1   is  a fixed  transducer with in- 

put  I  being  a  step  input and Mg  is  a transducer with  transfer 

function of form K/f(s).     K represents a gain and is  a  control- 

lable  input,   the task being  to maintain the output 0(t)  between 

two given curves, g^t)  and g2(t)  for 0 < t < T with  T fixed 

and t=0  corresponding to time of  step input. 

*The motivation for the example  is  a control  system of  an air- 
plane with  the input change  of stick position. 
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If K is restricted to a finite set of values, then, as 

will be shown, for each value of k, the transfer function in 

the time domain can be represented by a finite-state machine, 

more exactly, by a finite input-output memory machine. A 

parallel composition of these machines would then give a 

model of M« permitting, at least in principle, a decision 

algorithm to determine a best or an allowable value for K. 

Now such an approach, particularly if K can assume a 

large number of values, would be cumbersome.  Moreover, since 

each machine is actuated by the same input-output sequence, 

few of the total number of states in the parallel composi- 

tion are even exercised.  But since the parallel composition 

of finite input-output memory machines is also of this same 

type, an alternative approach is to have a single such machine 

as a model using many different training runs to evolve it. 

It is important to consider extended memory machines and 

embedded machines.  An extended memory machine is a machine, 

the input of which consists of the input symbol sequence to- 

gether with some combination of the last few input symbols 

and the last few outputs of the machine.  For reference pur- 

poses, denote the combination of previous input and output 

symbols as the extended memory. 

For such a machine with a given start jtate and a given 

initial extended memory, there is an equivalent finite-state 
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machine without extended memory which has  been called an em- 

bedded machine.     In general,  different  initial  states  and dif- 

ferent initial   extended memory can  give  rise to different em- 

bedded machines. 

The original   technique for exhibiting the existence  of 

the embedded machines  involved  the  finite-state functions 

associated with  these machines.     While  theoretically conven- 

ient for proving  existence of the embedded machine,   this  tech- 

nique was difficult  to implement and  apply to the problem of 

extracting  the  embedded machine.     Since  in  applications   to 

modeling,  extended memory machines  were  often used,   a simpler 

scheme for extracting  the embedded machine was desired.     Efforts 

were made  to devise one,  this  resulting  in  the technique  des- 

cribed below. 

For simplicity  the technique will   first be described  for 

a machine whose  extended memory consists  of the  last output 

symbol.     Let q.   be a  state of the extended memory machine  and 

let o.  be a  symbol  which is  an output for some transition  into 

q..    Then  the pair q.o. gives  rise  to  a  possible state for the 

embedded machines  as  does any other  such  state-output pair. 

For such  a state  the output and next  state  transition assoc- 

iated with each  input symbol  will  now be  given. 

Let a be any input symbol;  then  for  the state q.o.   the 

output is  that output when state q.   is  given the  input  (o.a). 

Suppose it is o^.     Let q    be  the next state reference when 
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(o.a) is the input to state q^.  Then the next state reference 

for state q.o. with input a is the state q„o.. Note that this 
i j n n k 

satisfies the requirements for a possible state of the embedded 

machine. The actual embedded machine is the submachine consist- 

ing of those states which can be reached from the state corres- 

ponding to the next state and the initial extended memory. 

Consider the example defined by Table 7 of the machine 

with extended memory consisting of the last output symbol. 

This is a five-state machine with start-state 3 and initial 

extended memory of 1. An input pair consists of the ordered 

pair of the last output and current input. The entries in the 

body of the table give next state and current output in that 

order.  For example, if the machine is in state 2 with input 

of 13, it transfers to state 4 and outputs a 3. Table 8 lists 

the states which might be states of the embedded machine.  En- 

tries in the table are interpreted as follows: The pair listed 

in the next state, the second element in the pair, is the output. 

A check of the table shows that states 11, 12, and 31 are indis- 

tinguishable states and can be combined into one state which is 

called 31 (since this is the start state). Also, states 41, 52, 

and 53 can never be reached from the start state and so can be 

dropped. 

The resulting machine, which is the embedded machine, is 

given by Table 9 with (a) being the next state reference por- 

tion and (k) the output portion. Although the machine of 
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TABLE   7. 

n 12 13 21 22 23 31 32 33 

1 n 23 31 11 23 11 43 21 22 

2 22 32 43 22 12 42 12 42 23 

3 31 23 11 12 33 21 11 22 51 

4 n 33 41 13 42 42 22 33 31 

5 22 32 23 13 11 42 33 42 23 

Start State - 3 

Initial External Memory - 1 
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TABLE 8. 

1 2 3 

n 11 23 31 

12 11 23 11 

13 43 21 22 

21 22 32 43 

22 22 12 42 

23 12 42 23 

31 31 23 11 

32 12 33 21 

33 11 22 51 

41 11 33 41 

42 13 42 42 

43 22 33 31 

51 22 32 23 

52 13 11 42 

53 33 42 23 

START STATE 31 
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TABLE    9. 

1 2 3 1 2 3 

13 43 21 22 3 1 2 

21 22 32 43 2 2 3 

22 22 31 42 2 2 2 

23 31 42 23 2 2 3 

31 31 23 31 1 3 1 

32 31 33 21 2 3 1 

33 31 22 51 1 2 1 

42 13 42 42 3 2 2 

43 22 33 31 2 3 1 

51 22 32 23 2 2 3 

(a) (b) 

START STATE 31 
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Table 5 is a state output machine, the combining of states 

11, 12, and 31 causes the resulting machine not to be a state 

output machine. Hence, the output table is also required. 

Consider now the case of the general extended memory 

machine with extended memory of, say, the last k output sym- 

bols and the last j input symbols. A typical input would 

then be 

'1 .. o i^ a I ••• a • a 

with the subscripted portion being the extended memory. A 

possible state in the embedded machine would be denoted by 

the sequence 

q»0i ... o^ai ... a, 

where q. is a state of the extended memory machine and 

o1 ... oka1 ... a.. 

is a sequence of inputs and outputs whose last transition 

is into q.. The output for this state with input a would 

be the output of state q.   with 

oi   ...  o■   ...  a•a, 
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Suppose it is o.  Further, let qn be the next state reference 

when q-j has input 

0 •%       •••  0 r, O i   •••  3*« 

Then the next state reference for the state 

q.o, ... o^a-, ... a. 'i"! k0l 

with input a is 

q-o9 ... o.oa9 ... a.a. ^"2 kuo2 

It is well known that difference equations can be approxi- 

mately represented by differential equations.  These in turn can 

be represented by finite-state machines within some quantization 

error.  In a differential equation the n-th output is represen- 

ted as a function of some finite number of previous inputs and 

outputs. It will now be shown that such a function can be rep- 

resented by a finite-state machine. 

Formally, if A and B are finite sets and zA is the class 

of finite sequences of elements in A, then f is such a function 

k+l   k if f maps EA into B and if there is a function g on A   x B 

into B so that for n > k. 
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f(an ^ = g(an»  an-T   '••   *  an-k'  bn-l Vk3 

where 

b^   = f(a,j,  ...   ,  a-j)       for      i  =  1,   ...   ,  n-1. 

k + 1 k (A is  the  set of sequences of  length  k+1   for A and B    is 

the  set of sequences  of  length k  from B).    That  such  a func- 

tion  f  can be  realized by a  finite-state machine will   be shown 

by constructing a machine which will  do so. 

Consider the machine m =  (A,  B,  S,  s.,   x.   6) where S 

consists  of  the initial   state s   ,  a state for each sequence 

(aj V  bj ,  b1)    where    1   < j   <  k    am 

b.,.   = f (a.j,   ...   ,  a-j)    for    1   < i   < J 

and a  state  for each sequence 

(a^t   ...   ,  ai,  DK,   ...   s  o-i /. '1 1 

Not all k-tuples of b's are necessary, only those which are 

possible values of f for the corresponding a's, but the ex- 

traneous states pose no problem.  The next state function x 
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is   defined by 

x(af  s0)  =  (a,  b)       where      b =  f(a) 

x(a,(a  , — .a-j,  b.,...,b^)) =   (a,a .,... »a-i,  b, b. ,...,b^) 

for  1   < j  < k where b =  f(a,  a.,  ...   ,  a-j). 

x(a,  (a^»   ...   i  ^it  b.»   ...   ,  b-i)}  -   (a«  a^,   ...   *  &2* 

b b9) 

where 

b = g(a,  a^,   ...   ,  ap  b^,  ...   ,  b^) 

The  output function  6 is  defined by 

6(a.  s0)  =  f(a) 

6(a,  (a.,   ...   ,  a,,  b.,   ...   ,  b^))  = f(a,  a.,   ...   ,  a-j) 

for  1   < k < k 

6(3,(3^,.. .a-j »b^,.. .b.|))  = g(a,a^ a-j »b^,... ,b^) 
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For any sequence of a from EA, a test by cases on the 

length of a shows 6( a, s ) = f(a) where 6 is the extension 

of 6 from A to EA, that is, the machine M realizes the 

function f.  In general, the machine M is not reduced so that 

an equivalent machine with fewer states would also realize 

the function.  Machines which realize such functions are termed 

finite input output machines with memory length k.  The above- 

constructed machine has not more than 

1 + (pq) + (pq)2 + ... + (pq)k 

states where p is the number of input symbols and q is the 

number of output symbols.  On the other hand, Massey has ex- 

hibited for any n, machines with n states and input-output 

memory of length n(n-l)/2.  Gill  has shown that for any n- 

state machine, this is the maximum memory length. 

It can also be shown that the series or parallel compo- 

sition of such finite input-output memory machines are finite 

input-output machines. Since the evolutionary program mutates 

1 Massey,  James  L.    IEEE Transactions on Electronic  Computers. 
Vol.   EC-15,  No.  4, August  1966,  pages 658-659. 

2 
Gill,  A.     Introduction to Theory of Finite-State Machines, 
New 

, A.     introduction to meory c 
York,  McSraw-Hi'll,  Inc.,   19B2. 
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the underlying state structure or automata, if the finite 

input-output machines have a well-defined underlying class 

of automata, restricting the mutation to this subclass should 

improve the efficiency of the evolutionary program in these 

cases where a finite input-output machine is the desired one. 

This was investigated. A class of automata was found which 

for any output function yields finite input-output machines; 

however, they are restricted in that the input alone deter- 

mines the output, for example, for any input sequence of 

length k only one output sequence is associated with it. 

Such machines would not suffice, for example, to model de- 

vices whose input-output function satisfies a differential 

equation. 

On the other hand, for any automata if the output alpha- 

bet equals or exceeds the number of states, there exists out- 

put functions which yield finite input-output machines.  To 

see this, let 6 be any input function such that for each in- 

put symbol a and each pair of distinct states, s, and s»» 

6(a» s-.) f  6(a, Sp). Since there are as many output symbols 

as states, this is possible.  Hence, for any given input sym- 

bol, the resulting output symbol uniquely determines the state 

and the machine has input-output memory of length two.  It, 

therefore, appears unlikely that a suitable subclass exists. 
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Finite-state machines were used in all applications of 

the evolutionary program. More powerful logical entities 

such as Turing machines were considered, however, inherent 

difficulties such as the "halting" problem discouraged their 

use.  It was, therefore, appropriate to investigate logical 

devices intermediate to finite-state machines and Turing ma- 

chines.  One candidate in this regard is pushdown  automata. 

These automata should be more powerful than finite-state ma- 

chines in that they hold some explicit memory.  Moreover, 

they are not subject to the halting problem.  In view of the 

fact that mutation within the evolutionary program is applied 

to the overlying finite-state automata (the output symbols 

being deterministically generated so as to provide the best 

fit of the data for the given automata), it appears particu- 

larly appropriate to consider pushdown automata. 

A pushdown automata M is a 6-tuple, (A, C, Q, 6, z , q ), 

where A is the input language, C is the pushdown alphabet, 

0 is the set of states, z is a special pushdown symbol, q0 

is the initial state, and 6 is a mapping of AXCXQ into C*xQ. 

(C* is the set of all finite words which can be made from 

the alphabet C including the empty word e.)  Intuitively, 

with each triple consisting of an input symbol, a pushdown 

symbol, and a state, 6 associates a pair consisting of a 

word made up of symbols from the pushdown alphabet and a 

state (the next state).  Translating this into machine opera- 
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tlon, suppose the automata has the word w in the pushdown 

store where w = xc with x a word in C* and c in C, is in 

state q.| and is given the input symbol a.  If ö(a, c, q,) = 

(y, qo)» then the automata goes into state q» and the word 

xy is now in the pushdown store. Note that y may be the 

empty word in which case the word in the pushdown store 

would be x, for example, the symbol c is "erased."  Under 

this convention, it is the last symbol in the pushdown store 

that is read so that the pushdown store is essentially a 

last-in, first-out device.  The symbol z is the initial 

symbol in the pushdown store and to prevent emptying of 

the store and the resulting premature halting of the autom- 

ata, erasing of z is no allowed, that is, it is never 

the case that 6(a, z , q) = (e, q'). 

The question remains as to whether or not pushdown 

automata are more powerful than finite-state machines when 

used as predictors.  Only a partial answer to this question 

can be offered.  Note that a finite-state machine, when used 

as a predictor (that is, the last output symbol is used as 

the next input symbol), generates output sequences which are 

eventually periodic.  It is of interest to determine whether 

or not pushdown automata, when used as predictors, will gen- 

erate only sequences that are eventually periodic. 

The action of a pushdown store automaton is determined 

by a triple consisting of the present state of the automaton. 
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the input and the top symbol in the pushdown store. The 

automaton then transfers to a next state (possibly the same), 

outputs a symbol, and changes the pushdown store. Three dif- 

ferent types of changes in the pushdown store can occur.  The 

top symbol may be erased and the next symbol from the top be- 

comes the top symbol, the top symbol may be replaced by a 

single symbol, or the top symbol may be replaced by a word 

of length greater than one. Call a triple which results in 

an erasure a decreasing triple and a triple which results in 

the top symbol being replaced by a word of more than one sym- 

bol an increasing triple.   . 

If a pushdown store autornata has no increasing triples, 

then only the initial pushdown'symbol ever occurs in the push- 

down store, and the automata is effectively a finite-state 

machine. So there is no loss in generality in assuming the 

automata has at least one increasing triple.  A sequence of 

successive triples for an automaton is called an increasing 

sequence if it contains at least one increasing triple but 

no decreasing triples.  Similarly, a sequence is a decreas- 

ing sequence if it contains at least one decreasing triple 

but no increasing triples. 

Lemma 1. When used as a predictor, a pushdown store 

automata has increasing sequences of bounded length or it 

has an increasing sequence of infinite length.  If it enters 

an increasing sequence of infinite length, then the output 
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is eventually periodic. 

There are only a finite number of states, of input symbols, 

and of pushdown symbols.  There are, therefore, only a finite 

number of increasing triples, say, k of them.  Similarly, there 

are only a finite number, m, of triples which are neither in- 

creasing nor decreasing.  Suppose there exists an increasing 

triple of length at least k + m + 1, then either an increasing 

triple or one which is neither increasing nor decreasing must 

be repeated.  Since in a sequence of triples none of which is 

decreasing, only the top pushdown symbols are ever used, the 

sequence of triples between repetitions of a triple is then re- 

peated. The resulting increasing sequence is then infinite and 

the output cyclic. 

Lemma 2.  When used as a predictor, if a pushdown store 

automata has decreasing sequences of triples of bounded length, 

the output is eventually cyclic. 

If there is an infinite increasing sequence which can be 

entered, then Lemma 2 follows from Lemma 1.  Consider then the 

case when all increasing sequences are bounded. Suppose the 

bound on the length of the decreasing sequences is k, then if 

the automata is actuated by a decreasing triple the ensuing 

actions of the automata until an increasing triple is encoun- 

tered are determined by the current triple and the top k sym- 

bols in the pushdown store or by the word in the pushdown store 

if it contains less than k symbols.  Since there are only a 
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finite number of decreasing triples and a finite number of k- 

tuples of pushdown symbols, the automata eventually must have 

the current triple and the top k symbols on the pushdown store 

a repetition of a previous one and so a cyclic output from that 

point on. 

As yet unresolved is the case of an automata which when 

used as a predictor has increasing sequences of bounded length 

but decreasing sequences of unbounded length. If such a machine 

could exist then the possibility of other than eventually cyc- 

lic output exists.  Efforts to devise such a machine or to prove 

it cannot exist have as yet been unsuccessful. 

Thus, pushdown automata appear to be more powerful than 

finite-state machines as predictors even though the output of 

such a machine when used as a precictor is eventually periodic. 

Specifically, pushdown automata have the advantage that, with 

a given number of states, longer cycles can be generated than 

by finite-state machines. 

The next logical device to be considered is the stack 

automata. Again, as in the case of both the finite-state ma- 

chines and pushdown automata, only the deterministic form of 

the automata will be considered.  The stact automata has the 

same basic structure as the pushdown automata with the addi- 

tional ability to read any symbol in the stack, not just the 

topmost symbol. A generalization of the stack automata has 

also been introduced in which the Input tape can be run both 
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forward and backward or remain stationary and is called a two- 

way stack automata. The form considered here is the one-way 

stack automata in which only forward movement or no movement 

is permitted. The two-way stack is prone to the "halting prob- 

lem." Since the stack pointer or reader moves one symbol at a 

time, the stationarity of the input tape is required so as to 

allow the machine the potential of reading any symbol on the 

pushdown stack. 

To show that a stack automata is actually more powerful 

than the pushdown automata, consider the set jwcwl where w is 

any word in ja, b|* and c is a symbol different from a and b}. 
3 

It is known that this set of words is not a context-free 

language and, hence, is not acceptable by a pushdown automata. 

However, it is acceptable by the stack automata which is now 

described. 

The stack automata consists of four states, (1, 2, 3, and 

4), with 1 as the initial state and J3} as the set of terminal 

states, for example, 3 is the only terminal state.  In the 

initial state it duplicates the input symbol on the pushdown 

stack, moves to the next stack position and next input posi- 

tion, and remains in state 1 unless the symbol is a c or a 

Gfnsburg, Seymour. The Mathematical Theory of Context-Free 
Languages, McGraw-Hill, Inc., New York, 19&6. 
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blank which indicates end of Input. Hence, any word w without 

a c in It Is duplicated In the pushdown store. If a blank Is 

Input, the machine stays In state 1 and stops. When a c Is 

the Input In state 1, the machine moves the stack pointer back 

to the first stack symbol, moves the input ahead one, and goes 

to state 2.  In state 2, as long as the Input tape is not blank 

and the input tape and stack agree, it moves the stack and in- 

put ahead one position and remains in state 2.  If the symbols 

disagree. It goes to state 4 where it stays for any input and 

stack symbol stopping the machine on a blank input.  If the ma- 

chine is still in state 2 when end of tape is reached, for ex- 

ample, a blank is input, and if stack symbol is blank, it moves 

to state 3 and machine stops, otherwise, it stays in state 2 and 

stops. Hence, the machine reaches state 3 and stops there only 

If the input is of form wcw with w in |a, b}*. 

Intuitively, the pushdown store cannot recognize a word of 

form wcw since, although w can be stored, the machine reads it 

backward and so, except for polindromes, cannot correctly com- 

pare the word after the c with the word in front. Note that a 

pushdown store can accept jwcw  where w Is the word w reversed} 
D 

since reading w backwards is equivalent to reading w forward. 

The usual formulation for the stack automata requires that 

the Input alphabet A contain a special symbol ß, the terminal 

symbol. A word w from JA - |ß}} *, for example, w contains no 

ß's, is accepted by M if whenever the word ws is input with M 

056 



in state s , then when symbol ß Is read the machine enters 

one of the terminal states.  The symbol &  is not necessary, 

but simplifies the formulation. For a two-way stack automata 

an initial input symbol is needed to prevent running off the 

beginning of the tape. 

When used as a transducer or predictor, the terminal 

symbol is unnecessary since in this application there is no 

concern for a last input symbol. Also, the set of terminal 

states is replaced by an output language C and the result of 

6 or 6A is now a quadruple rather than a triple.  The first 

three coordinates are as before (for example, next state, 

movement of input tape, movement of stack pointer, and any 

writing or erasing of stack symbols) with the fourth coordin- 

ate the output symbol.  One of the possible output symbols is 

the blank or equivalently no output so as to allow the stack 

pointer to move more than one space before an output is re- 

quired. 

Previous analysis indicated that when used as a predic- 

tor the pushdown automata would output only cyclic sequences 

and so does not improve on the finite-state machine as a pre- 

dictor. A stack automaton will now be given which outputs as 

a predictor the sequence 0 10 0 110..., for example, al- 

ternate sequences of 0's and I's of increasing length, which 

is certainly not cyclic. 

Let M be the stack automaton with 
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S =  |s0.  s^  s2, S3I 

A -  JO.   If 

B =  10.   1.  zl 

c = |o. i. A! 

and § and  5* defined as follows 

fi(so»   '   •  zo)  '  (so'  N»  R'  A)' 

6(s0.   •   .   1)  =  (s0,  R,  R,   1) 

6.(sn,   *   .  A)  =  (s,,  N,  N     1,   A) ** 

6(5,,   *   ,   1)   =   (s,,  N,   2.   A) 

6(5,,   •    .   zn)   =   (s?,   N,   R,   A) 

6(s?,   '   ,   1)   =   (s9,   R,   R,   0) 

The  •   indicates  either a 0 or a  1   can be entered. 
** 

N 1 indicates no move and writing a 1 on the blank space 
being read. 
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6.(s2, • , A) = (S3, N, L, A) 

6(53, • . 1) = (S3, N, L, A) 

«(S3, * , 20) = (s0, N, R, A) 

The remaining triples on which 6 and öä should be defined 

cannot occur and so are not included. 

A description of the machine's actions follows.  At the 

start it is in state s with the 0 or 1 as input symbol and 

stack symbol z .  It stays in state s with same input, but 

moves stack symbol ahead to next space which, at this time, 

is blank.  It then prints a 1 in this blank space, does not 

move input tape or output a symbol, and moves to state s*. 

Other wise, when it enters s , the stack pointer is on the 

bottom 1, the machine then moves both the input tape and 

stack pointers right and outputs a 1 for each 1 on the stack. 

When the pointer leaves the word on the stack to the first 

blank, the machine prints a 1 there, does not move the input 

tape, does not make an output, and goes to state s,.  In state 

s-i there is no input tape movement nor output, the machine 

moves the stack pointer back until it reaches z staying in 

state s^. When the pointer reaches z , it is returned to the 

bottom 1 on the stack and the machine goes to state s» without 
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m oving the Input tape or outputing a symbol.  In So the ma- 

chine's actions are as in s except the output is a 0 rather 

than a 1 and when the stack pointer reaches the first blank 

space, the machine moves it back to the topmost 1 on the 

stack and goes to state s .  State s, is a duplicate of state 
3        J 

s-. except when the stack pointer reaches the symbol z , the 

machine moves to state s„ rather than state So. This com- o c 

pletes a cycle and the machine goes through the cycle over 

and over except during each cycle the number of I's on the 

stack is increased by one and consequently so is the length 

of the output sequences of zeroes and ones.  For convenience, 

this machine was constructed so as to be independent of the 

input.  By making the output depend on the input, different 

output sequences would result depending on the initial input 

symbol. 

060 



CONCLUSION 

Finite-state machines provide a natural basis for the pre- 

diction of time series and the modeling of an unknown transducer. 

Evolutionary programming offers a means for finding suitable fi- 

nite-state machines with respect to a given goal (payoff or 

error-cost matrix) so long as the cost of required data proces- 

sing does not become excessive.  Tracing the average cost of 

computation in the recent past makes it reasonable to expect 

much greater efficiency in coming years.  The advent of intrin- 

sic parallel computers would open new prospects for the realiza- 

tion of prediction and modeling through the continual search for 

automata which are most appropriate to the situation at hand. 

In fact, such mechanisms might permit improving population prop- 

erty constraints on the inheritance of the evolving organisms. 

Various possibilities for governing the nature and amount 

of mutation "noise" have been considered.  However, here there 

is an essential trade-off between efficiency and security...the 

more tightly linked the mutation noise to the successful kinds 

of mutations which have occured in the past, the less the like- 

lihood of finding radical departures in terms of the logic of 

prediction and control.  The greater the efficiency in the 

search for each new logic within a restricted class of poten- 
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tial  environments,  the  less  the versatility of the  program and 

the more predictable becomes   its  behavior.     In  the  face of a 

competitive environment,   it may well  prove worthwhile to be 

less  efficient and most versatile, even at  far greater compu- 

tation cost. 

Evolution,  indeed,  the scientific method,  occurs at vari- 

ous  levels  of abstraction.     It  is clearly worthwhile to restrict 

attention  to those models which  have,   in  the past,   been found 

most worthwhile and to model   these as  a  basis  for  further pre- 

diction  and  control.     In  fact,  models  of models  can  be used at 

all   levels,  provided  the  sample  size  is  adequate.     Difficulty 

is encountered, however,  in  that the alphabet of possible  sym- 

bols  is  much greater at each  higher level.     Wise judgment  as  to 

the use of  a reduced alphabet of descriptors may prove worthwhile 

or the very essence of the  higher-level  modeling  may have been 

lost.     Such  selection of an  appropriate alphabet  reduction  forms 

a meta-problem which  can  only  be dealt with within  a  particular 

well-defined frame of  reference.    Such  evolutionary  programming 

remains  to  be explored. 

The  immediate problem of  this investigation  has  been  to 

devise  new means  for solving  immediate  real  world  problems  of 

Naval   interest.    Thus,  with  this  intent,  attention  has been  fo- 

cused upon  developing  an  improved logical   capability with  re- 

spect to  a wide class  of practical  problems.     Hopefully,  this 
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technique  can  also be used to  investigate the sensitivity  of 

prediction  and  control with  respect  to various  goals.     Hope- 

fully,   it may  require explicit consideration  of  the  problem of 

choosing meaningful  descriptors  and  goal  formulation. 
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